B Physics at the Tevatron and the B Factories

 $\sin 2\beta$ and B_s Mixing Lecture II

Christoph Paus

Massachusetts Institute of Technology

XXXI International Meeting on Fundamental Physics

Soto de Cangas (Asturias), Spain February 24-28, 2003

Overview

Motivation and History

- + Why is *CP* violation interesting?
- + First important B physics measurements

Introduction to the Experimental Setup

- + b production mechanisms as motivation
- + B Factories versus Tevatron
- + BaBar/Belle versus CDF/DØ

Two Stories into some Detail

- + Tools for the measurement
- + Observation of CP violation in B systems, $\sin 2\beta$
- + How Tevatron will measure B_s mixing, Δm_s

Web Pointers

The experiments

- + Tevatron: http://www-cdf.fnal.gov/, http://www-d0.fnal.gov/
- + B Factories: http://www.slac.stanford.edu/BFROOT, http://belle.kek.jp/

Overview reports

+ The BaBar Physics Book

http://www.slac.stanford.edu/pubs/slacreports/slac-r-504.html

+ B Physics at the Tevatron: Run II and Beyond

http://arXiv.org/pdf/hep-ph/0201071

Excellent live videos / transparencies on the Web

+ SLAC summer school 2002:

http://www-conf.slac.stanford.edu/ssi/2002/

+ MIT Course: Heavy Flavor Physics (F. Würthwein)

http://mit.fnal.gov/~fkw/teaching/mit8.881.html

Advanced Measurements: B_s Mixing

Feynman diagram of $B_{d,s}^0$ mixing:

Differences

- + B_d^0 crosses two families
- + B_s^0 crosses one family
- + faster B_s^0 mixing (≈ 40)

Experimental challenge

- ct resolution critical
- + fully hadronic decays:

$$B_s \rightarrow D_s^- \pi^+ (\pi^+ \pi^-)$$

To be done at Tevatron

Advanced Measurements: CP Violation – $\sin 2\beta$

CP Violation mechanisms

- + interference of decay amplitudes
- + interference of mixing diagram
- + interference betwwen mixing and decay amplitude

Golden mode: $B^0 \rightarrow J/\psi K_S$

CP eigenstate: $\eta_{f_{CP}} = -1$

$$\begin{array}{ccc}
 & C \\
 & C \\
\hline
 & C \\
\hline
 & C \\
\hline
 & Im \lambda_{b \to c\overline{c}s} = \eta_{f_{CP}} Im \left[\frac{V_{tb} V_{td}^*}{V_{tb}^* V_{td}} \frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}} \frac{V_{cd}^* V_{cs}}{V_{cd}^* V_{cs}^*} \right] \\
 & = \eta_{f_{CP}} \sin 2\beta
\end{array}$$

$$A_{f_{CP}}(t) = \frac{\Gamma(\overline{B}^0(t) \to f_{CP}) - \Gamma(B^0(t) \to f_{CP})}{\Gamma(\overline{B}^0(t) \to f_{CP}) + \Gamma(B^0(t) \to f_{CP})} = -Im\lambda_{f_{CP}}\sin\Delta m_d t$$

CKM Measurements from B

Unitarity triangle and what measures it

CP Violation parameter, $\sin 2\beta$

- + $B^0 \rightarrow J/\psi K_S$
- + simple signature
- + relatively large branching

Mixing parameter, Δm_s

- + $B_s^0 o D_s^- \pi^+$
- + needs hadronic trigger
- + clean signature
- + relatively large branching

CP Violation parameter, γ

- + $B^0_{s,d} o \pi\pi, K\pi, KK$
- + tricky.. for later

Comparisons of B Experiments

Accelerator	CESR,DORIS	LEP,SLC	PEPII,KEKB	Tevatron
Detector	Argus,CLEO	ADLO,SLD	BaBar,Belle	CDF,DØ
$\sigma(b\overline{b})$	≈ 1 nb	≈ 6 nb	≈ 1 nb	≈ 50 µb
$\sigma(b\overline{b})$: $\sigma(had)$	0.26	0.22	0.26	0.001
b hadrons	B^0, B^+	all	B^0, B^+	all
Boost $< \beta \gamma >$	0.06	6	≈ 0.5	2-4
Production	Bs at rest	$b\overline{b}$ btb	forward boost	$b\overline{b}$ not btb
Event pile-up	no	no	no	yes
Trigger	inclusive	inclusive	inclusive	selective

Comments

- + experimentally LEP/SLC at Z looks ideal but expensive
- + Babar and Belle can cheaply produce although not all
- Tevatron has the highest cross section and can do all but lots of background
- nice complementary setup

Detailed Cartoon of Measurement at $\Upsilon(4S)$

Analysis Components

Final State Reconstruction

Measurement of t or Δt

b Flavor Tagging

Final State Reconstruction

Main B Reconstruction Variables – $\Upsilon(4S)$

In $\Upsilon(4S)$ rest frame:

$$E_{beam}^*$$
 – beam energy (E_B^*, p_B^*) – B four momentum

Two almost uncorrelated variables

+
$$\Delta E = E_B^* - E_{beam}^*$$
 signal at $\Delta E \approx 0$
+ $m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$ signal at $m_{ES} \approx m_B$

Energy substituted mass m_{ES} : E_{beam} replaces E_B

Resolutions

+
$$\sigma_{\Delta E}^2 = \sigma_{beam}^2 + \sigma_E \approx \sigma_E \approx 10 - 40 \text{ MeV}$$

+ $\sigma_{m_{ES}}^2 = \sigma_{beam}^2 + \frac{p^2}{m_B^2} \sigma_p^2 \approx \sigma_{beam}^2 \approx 2.6 \text{ MeV}$

Main B Reconstruction Variables – $\Upsilon(4S)$

Channel: $B^0 \rightarrow J/\psi K_S^0$

Signal region

+ $\pm 3\sigma$ in m_{ES} and ΔE

Sideband region

+ rest window for bg

Continuum Background Supression – $\Upsilon(4S)$

Main Idea: $B\bar{B}$ is spherical in $\Upsilon(4S)$ CM since produced at rest Continuum background is jet-like

Ratio of 2nd/0th Fox-Wolfram moments

Angle of thrust axis of *rest* wrt B candidate direction θ_T

Ch. Paus, IMFP Feb 24-28, 2003 - 12

Subresonances – $\Upsilon(4S)$

masses are constraint after selection

Hadronic Samples at $\Upsilon(4S)$ – Self-Tagging

Hadronic Samples at $\Upsilon(4S) - CP$ Eigenstate

Reconstruction of b Hadrons at Tevatron

No knowledge of total energy of collision

Basically no constraints on energy or momentum

Use high p_T leptons

Use high p_T resonances

Use precise knowledge of vertex positions

- require b hadron to point at primary vertex
- + require $L_{xy} > 0$ typically 100 μ m (careful: bias ct)

Subresonances at CDF – J/ψ

Subresonances at CDF - Charm

Result of diplaced track trigger!! No Lepton was harmed in making these plots

20 times more data available

used to measure mass difference

Self Tagging Final States at CDF

Measurement of t or Δt

Measurement of t at Tevatron/LEP

Primary vertex is well known point Negative tails allow to control resolution function

Measurement of Δt at B Factories

Determine Δt from Δz between B Mesons Resolution function and lifetime are convoluted

B Lifetime Measurements at B Factories

BaBar (20.7 fb⁻¹) PRL 87 (2001) 201803
$$\tau_{B^0} = 1.546 \pm 0.032 \pm 0.022$$
 ps $\tau_{B^+} = 1.673 \pm 0.032 \pm 0.023$ ps $\tau_{B^+}/\tau_{B^0} = 1.082 \pm 0.026 \pm 0.012$

Belle (29.1 fb⁻¹) PRL 88 (2002) 171801
$$\tau_{B^0} = 1.554 \pm 0.030 \pm 0.019 \text{ ps}$$
 $\tau_{B^+} = 1.673 \pm 0.026 \pm 0.015 \text{ ps}$ $\tau_{B^+}/\tau_{B^0} = 1.091 \pm 0.023 \pm 0.014$

Agree within each other Agree with world average

Proof of principle:
Control resolution function

B Lifetime Measurements at Tevatron

Large sample of $J/\psi \to \mu^+\mu^-$ events

- + calibrate resolution
- + understand alignment
- + measure inclusive *B* lifetime
- + so far only r- ϕ silicon used

Lifetime measurements

$$c\tau_{incl} = 458 \pm 10 \text{ (stat)} \pm 11 \text{ (sys)} \mu\text{m}$$

 $c\tau_{B^+} = 446 \pm 43 \text{ (stat)} \pm 13 \text{ (sys)} \mu\text{m}$

About CDF results

- + silicon already well understood
- + consistent with Run 1, world average
- incl. systematics as Run 1
- major improvements expected:
 Layer 00, 3D tracking, alignments
- + now ten times more data
- + very soon au_{B_s} and au_{Λ_b}

b Flavor Tagging

Detailed Cartoon of Measurement at $\Upsilon(4S)$

Distribution of Mixing at $\Upsilon(4S)$

Distribution of mixed and unmixed events

$$f_{mix,\pm}(\Delta t) = \left[\frac{e^{-|\Delta t|/\tau_B}}{4\tau_B}(1 \pm (1 - 2w)\cos\Delta m_d\Delta t)\right] \bigotimes R(\Delta t)$$

 $f_{mix,+}$ - means unmixed or different flavors

 $f_{mix,-}$ - means mixed or same flavors

1-2w - quality of the tagging algorithm (dilution)

 $R(\Delta t)$ - detector resolution function

Methods of Flavor Tagging at B Factories

At B factories flavor tags rely on tagging side

- + primary lepton
- + secondary lepton
- + Kaon(s)
- + Soft pions from *D** decays
- + Fast charged tracks

$$B^0
ightarrow D^{*-}\ell^+ v$$
 $B^0
ightarrow D^-\pi^+, D^-
ightarrow K^{*+}\ell^- ar{v}$
 $B^0
ightarrow ar{D}X, ar{D}
ightarrow K^+ X$
 $B^0
ightarrow D^{*-}X, D^{*-}
ightarrow ar{D}^0\pi_s^-$

Flavor Tagging Performance at B Factories – BaBar

Tagging Algorithm	efficiency	wrong tag w	$Q = \varepsilon (1 - 2w)^2$
Lepton	10.9 ± 0.3	9.0 ± 1.4	7.4 ± 0.5
Kaon	35.8 ± 1.0	17.6 ± 1.0	15.0 ± 0.9
NeuralNet 1	7.7 ± 0.2	22.0 ± 2.1	2.5 ± 0.4
NeuralNet 2	13.8 ± 0.3	35.1 ± 1.9	1.2 ± 0.3
Combined	$68.4 \pm 0.7\%$	9.0 ± 1.4%	26.1 ± 1.2%

Large sample of fully reconstructed events allows precise measurement

Calibrate the taggers using data

No MonteCarlo used here

Quality meter: $\sigma(\sin 2\beta)_{stat} \propto 1/\sqrt{Q}$

Event Samples for Mixing Measurement – BaBar

Mixing Measurements – BaBar/Belle

 $\Delta m_d = 0.528 \pm 0.017 \pm 0.011 \text{ ps}^{-1}$ (Belle) $\Delta m_d = 0.516 \pm 0.016 \pm 0.010 \text{ ps}^{-1}$ (Babar)

PRL 88 (2002) 221802

Flavor Tagging at the Tevatron

Tagging methods

- + lepton opposite side tag
- + kaon OS tag
- jet charge OS tag
- + pion same side tag
- + kaon same side tag (B_s)

Same side tagging

$$\begin{array}{c|c}
\overline{b} \\
\overline{d} \\
\overline{d} \\
\overline{u}
\end{array}$$

$$\begin{array}{c|c}
\overline{b} \\
\overline{s} \\
\overline{s} \\
\overline{u}
\end{array}$$

$$\begin{array}{c|c}
\overline{b} \\
\overline{s} \\
\overline{s} \\
\overline{k} \\
\overline{u}
\end{array}$$

$$\begin{array}{c|c}
\overline{k}^{*0} \\
\overline{u} \\
\overline{u}
\end{array}$$

Flavor Tagging at the Tevatron

Example: taggers for $B^0 \to J/\psi K_S^0$

Method	ε	D=1-2w	εD^2
Lepton	$(5.6 \pm 1.8)\%$	$(62.5 \pm 14.6)\%$	$(2.2 \pm 1.2)\%$
Jet Charge	$(40.2 \pm 3.9)\%$	$(23.5 \pm 6.9)\%$	$(2.2 \pm 1.3)\%$
Same Side	(≈ 70)%	(≈ 17)%	$(2.1 \pm 0.5)\%$
Total			$(6.3 \pm 1.7)\%$

Tagger depend on kinematics of event sample: trigger bias Measure CP asymmetry, $\sin 2\beta$

$$A_0(t) \equiv \frac{N(t)_{\mathsf{B}^0 \to f_{CP}} - N(t)_{\overline{\mathsf{B}^0} \to f_{CP}}}{N(t)_{\mathsf{B}^0 \to f_{CP}} + N(t)_{\overline{\mathsf{B}^0} \to f_{CP}}} = D \sin 2\beta \sin(\Delta m_q t)$$

For $\sin 2\beta$: measure Dilution (1-2w) first \rightarrow calibration sample

CDF used: $B^0 \rightarrow J/\psi K^{*0}$ extrapolate different kinematics

First $\sin 2\beta$ at CDF (1999)

Not very clean but ≈ 400 events No significant *CP* violation yet

Same side π , jet charge and soft lepton

$$\sin 2\beta = 0.79^{+0.41}_{-0.44}$$
 $\varepsilon D^2 = 6.3 \pm 1.7\%$

first presented 1999: PRD 61 (2000) 072005

Ch. Paus, IMFP Feb 24-28, 2003 - 34

The real $\sin 2\beta$ from the B Factories

CP samples $\eta_f = -1$

+
$$B^0 \rightarrow J/\psi K_S^0 (\rightarrow \pi^+\pi^-)$$

+
$$B^0 \rightarrow J/\psi K_S^0 (\rightarrow \pi^0 \pi^0)$$

+
$$B^0 \rightarrow \psi(2S)(\rightarrow \ell^+\ell^-)K_S^0$$

+
$$B^0 \rightarrow \psi(2S)(\rightarrow J/\psi\pi^+\pi^-)K_S^0$$

+
$$B^0 \rightarrow \chi_{c1} (\rightarrow J/\psi \gamma) K_S^0$$

+
$$B^0 o \eta_c(o KK\pi)K_S^0$$

CP samples $\eta_f = +1$

+
$$B^0 \rightarrow J/\psi K_L^0$$

Integrated luminosity

Babar: 81,3 fb⁻¹

Improved tagging:

$$\varepsilon D^2 = 28.1 \pm 0.7\%$$

Asymmetries – Mixing and CP

Mixing asymmetry, Δm_d

$$A_{mix}(t) \equiv \frac{N(t)_{unmix} - N(t)_{mix}}{N(t)_{unmix} + N(t)_{mix}} = D \cos(\Delta m_d t)$$

CP asymmetry, $\sin 2\beta$

$$A_{CP}(t) \equiv \frac{N(t)_{\mathsf{B}^0 \to f_{CP}} - N(t)_{\overline{\mathsf{B}^0} \to f_{CP}}}{N(t)_{\mathsf{B}^0 \to f_{CP}} + N(t)_{\overline{\mathsf{B}^0} \to f_{CP}}} = D \sin 2\beta \, \sin(\Delta m_q \, t)$$

Use large flavor sample to determine dilution *D* and resolution functions

Transfer knowledge to significanlty smaller CP sample

Same idea applies to Tevatron

Essential Tests of Taggers

Crucial question: Does the tagger output look the same for the flavor and for the *CP* samples? Yes it does!

BaBar Result for $\sin 2\beta$

Belle Result for $\sin 2\beta$

What is different for B_s Mixing?

Feynman diagram of $B_{d,s}^0$ mixing:

Differences

- + B_d^0 crosses two families
- + B_s^0 crosses one family
- + faster B_s^0 mixing (≈ 40)

Experimental challenge

- + ct resolution critical
- + required resolution ≈ 50 fs
- + fully hadronic decays:

$$B_{\rm S}
ightarrow D_{\rm S}^- \pi^+ (\pi^+ \pi^-)$$

- + hadronic trigger (SVT)
- Kaon identification (TOF)

Where are we in CDF with B_s Mixing?

Hadronic trigger

- reasonably understood
- + reached design resolution $\sigma(d_0) = 48 \ \mu \text{m}$
- + not as efficient as planned

Offline tracking

- + r- ϕ well understood
- + z tracking almost ready
- + essential L00 not yet used

Where are we in CDF with B_s Mixing?

Particle Id

- TOF hardware works well; resolution per PMT as expected
- efficiency lower than expected; too many hits per bar

First B_s mixing results not earlier than summer 2004

Standard Model Constraints

Conclusions

Physics Motivation

- + CKM physics exciting: potential discrepancy with SM
- + amount of CP violation well predicted but too small
- + additional measurements test consistency of SM

Comparison of $\Upsilon(4S)$ and $p\overline{p}$

- beautifully complementary programs
- + high precision B^0 , B^+ at the B Factories
- + all other b hadrons at Tevatron

Results

- + *CP* violation has been observed in *B* system
- + Era of precision *CKM* has started
- + consistent with expectations
- + lots of other B physics: spectroscopy $B_s, B_c, \Lambda_b, B^{**}$...